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Abstract

A method is developed and applied to select optimal models for loads encountered during the
atmospheric re-entry of a spacecraft. In general, information on the re-entry environment is limited,
meaning that two or more models for this environment may be consistent with the available information.
This defines a collection of candidate models; each model in the collection is consistent with the available
information. Methods from decision theory are applied to select the optimal member from the collection. A
performance criterion, based on postulated utility functions, is used in the selection process. Herein, we
model the re-entry environment as a stochastic process in both space and time. Information on the
probability law of the process is limited. The candidate models form a class of non-Gaussian, stationary,
stochastic processes. It is shown that the response of a critical internal component is sensitive to
assumptions on the unknown properties of the input; the response of the component is therefore used as the
performance criterion to select an optimal model for the re-entry environment.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Atmospheric re-entry is concerned primarily with the passage of ballistic objects through the
Earth’s atmosphere [1]. All space vehicles that are required to return to Earth must endure the
extreme environment associated with atmospheric re-entry. This environment includes the effects
of aerodynamic heating, large rates of deceleration, radiation effects, and loads due to shock and
see front matter r 2005 Elsevier Ltd. All rights reserved.
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vibration [2]. While all of these effects must be considered in typical spacecraft design, the work
presented here is concerned only with the vibrational effects of the re-entry environment. The
remaining effects can be incorporated into the proposed framework for model selection.
At high speeds encountered during atmospheric re-entry, the in-flight vibration response of a

spacecraft is primarily due to external fluctuating pressure loads, which result from unsteady
aerodynamic flows over the vehicle [3]. The role of the structural/mechanical engineer is to ensure
that all internal components of the spacecraft, e.g., electronics, astronauts, etc., survive
atmospheric re-entry. Typically, this means that the internal components must continue to
operate normally with a prescribed level of reliability. To do this requires models of the spacecraft
and the re-entry environment, where the latter is a characterization of the applied pressure loads
in space and time. Due to the severity of this environment, it is nearly impossible to attain
experimental data, and the characteristics of the excitation remain largely undefined. Usually,
assumptions are made about the missing information so an analysis can be completed; the
consequences of these assumptions are, in general, difficult to quantify.
We model the pressure field as a stochastic process in space and time, and examine the effects of

two missing pieces of information: (1) the spatial correlation of the process, and (2) the marginal
distribution function of the process. A decision-theoretic method for model selection, developed
in Refs. [4,5], is used to select the optimal model from a class of candidate models for the spatial
correlation and marginal distribution of the applied pressure field.
Typically, the assessment of the structural response of a spacecraft during atmospheric re-entry

is limited to second-moment analysis [3,6,7] and [8, Chapter 10]. For structural reliability
calculations, this requires one to assume the marginal distribution function of the applied pressure
field to be Gaussian. Consider Fig. 1, which shows actual accelerometer data recorded during the
initial portions of the re-entry phase of mission STS-62 of the NASA Space Shuttle Orbiter [9].
Shown are the accelerations of the center of mass of the Orbiter in three directions as a function of
time. The sample functions shown in Fig. 1 clearly do not come from a Gaussian process. In
addition, wind tunnel pressure measurements on an aircraft fuselage are shown in Fig. 2; similar
non-Gaussian behavior is noted. Non-Gaussian response (Fig. 1) and non-Gaussian applied
pressures (Fig. 2) together suggest that the applied load during atmospheric re-entry may be non-
Gaussian as well.
Consider the spacecraft depicted schematically in Fig. 3, where the random vector pressure

field, Zðx; tÞ, models the loading during atmospheric re-entry, where x and t denote location on
the outer surface of the spacecraft and time, respectively. The spacecraft, shown here as a perfect
cone, has several stiffening ribs oriented in the hoop direction; a base ring is located at the aft end
of the spacecraft to provide added stiffness. An internal component, depicted by a solid circle in
the figure, is connected to the skin of the spacecraft via several supports, each having structural
properties, kc.
Two response quantities are of interest: the vector displacement response of the skin of the

spacecraft, Dðx; tÞ, and the vector acceleration response of the internal component, €YðtÞ. Models
of the spacecraft and the applied pressure field can be developed based on the available
information. The objective is to use these models to assess the performance of the spacecraft
during atmospheric re-entry from properties of Dðx; tÞ and €YðtÞ.
In Section 2, we develop a 1-D model for the spacecraft; it is assumed all required information

is available to construct the spacecraft model. In Section 3, the model for the applied pressure
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Fig. 1. Axial (a), vertical (b), and lateral (c) acceleration data from Space Shuttle mission STS-62 [9].
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Fig. 2. Wind tunnel pressure measurements.
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field, Z, is developed. The available information on Zðx; tÞ is incomplete and we apply the
decision-theoretic method for model selection to choose optimal models for the input in Sections 4
and 5. Because the applied pressure field is a stochastic process in both space and time, the spatial
and temporal correlation functions, as well as the marginal distribution function, are necessary to
define Zðx; tÞ. Two cases are considered for illustration: (1) Zðx; tÞ is assumed to be a Gaussian
process with partially defined spatial correlation function, and (2) Zðx; tÞ is assumed to be
completely defined in the second-moment sense, but with unknown marginal distribution
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Ÿ (t)

k c

k c

k c

k c

Skin

Component

Base ringStiffening rib

Support

Fig. 3. Spacecraft during atmospheric re-entry.

R.V. Field Jr., M. Grigoriu / Journal of Sound and Vibration 290 (2006) 991–1014994
function. The decision-theoretic method for model selection is used to select optimal models for Z
for each case.
2. Spacecraft model

We develop the model for the spacecraft shown in Fig. 3. Two cases are considered: (i) the
dynamics of the internal component and spacecraft are fully coupled, and (ii) the dynamics of the
internal component depend on the spacecraft, but no feedback occurs. Methods for analysis under
both cases are discussed. The available information on the spacecraft, discussed in Section 2.1, is
assumed complete; Sections 2.2 and 2.3 discuss the mathematical model and methods for response
analysis, respectively.

2.1. Available information

It is assumed that: (1) the spacecraft is made of a single, linear elastic material with known,
deterministic modulus of elasticity, e, and mass density, m, (2) the spacecraft geometry is a
perfect cone with cone angle, a, (3) away from the stiffening ribs and base ring, the skin of the
spacecraft has constant thickness, c, (4) the internal component can be modeled as a point mass
with value mc, and (5) its supports behave as simple springs with known, deterministic spring
constant, kc.
Because of the symmetry of the spacecraft, an axial section of the cone, having width

sðx1Þ ¼ s0x1, where s040 is a constant, can be formulated as a beam on elastic foundation [10].
This conical section is shown in the top of Fig. 4; shown at the bottom is a, the cone angle, and c,
the skin thickness. The corresponding picture of the spacecraft is a function of a single dimension,
x1 ¼ x, and is shown in Fig. 5, where Zðx; tÞ ¼ Zðx; tÞ denotes the applied scalar pressure field,
and Dðx; tÞ ¼ Dðx; tÞ denotes the scalar displacement response of the beam. The quantities, Z and
D are no longer in bold to denote they are now scalar quantities. The component and its support
behave as a single dof oscillator located a distance b from the front of the beam, with mass, mc,
and stiffness, kc ¼ kc. The beam has total length l. The quantity Y ðtÞ represents the scalar
displacement response of the component with respect to an inertial frame of reference.
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2.2. Mathematical model

The 1-D representation of the spacecraft is a beam on elastic foundation with attached
oscillator. The foundation stiffness of the beam is given by (see Ref. [10, p. 120])

kðxÞ ¼
s0ec

x sin2 a cos a
; 0oxpl, (1)

where the non-uniformity of kðxÞ is due to the conical geometry of the spacecraft. At x ¼ 0,
corresponding to the nose of the spacecraft, the stiffness is infinite; the beam is therefore
constrained in the vertical direction at x ¼ 0. The beam is tapered, with cross-sectional area

aðxÞ ¼
s0kc

cos3 a
x (2)
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and bending moment of inertia

iðxÞ ¼
s0ðkcÞ3

12 cos3 a
x, (3)

where parameter kX1 is used to represent the effective thickness of the skin due to the stiffening
ribs (refer to Fig. 4). The spring at the right end of the beam with stiffness kl40 is used to
represent the added stiffness of the base ring.
Let q and qc denote viscous damping coefficients for the beam and component support,

respectively. The equations of motion governing the beam deflection and position of the mass are
given by [11]

e½iðxÞD00ðx; tÞ�00 þ maðxÞ €Dðx; tÞ þ q _Dðx; tÞ þ kðxÞDðx; tÞ þ klDðl; tÞdðx� lÞ

¼ �mc
€Y ðtÞdðx� bÞ �

xsðxÞ

2
Zðx; tÞ,

mc
€Y ðtÞ þ qc

_Y ðtÞ þ kcY ðtÞ ¼ qc
_Dðb; tÞ þ kcDðb; tÞ ð4Þ

with appropriate boundary and initial conditions. Here, dðxÞ denotes the Dirac delta function,
xsðxÞ=2 is the area of the top of the beam, used to convert the applied pressure, Zðx; tÞ, to a force,
and ð Þ0 and _ð Þ denote differentiation with respect to x and t, respectively.
Table 1 lists the values of the parameters of the spacecraft model. Parameters e and m are

consistent with the properties of aluminum. The base ring stiffness is five times the foundation
stiffness at the right end of the beam, i.e., kl ¼ 5kðlÞ, and s0 was selected so that sðlÞ ¼ 1 rad.
Parameters c and k were selected to give adequate separation between the stiffness of the beam
and the stiffness of the foundation.

2.3. Response analysis

Define 0 ¼ x1ox2o � � �oxn ¼ l to be a partition of ½0; l� and let

DiðtÞ ¼ Dðxi; tÞ; i ¼ 1; 2; . . . ; n; and

DðtÞ ¼ ðD1ðtÞD2ðtÞ . . .DnðtÞÞ
T. (5)
Table 1

Spacecraft model parameters

Parameter Value Units

a p=12 rad

k 50 —

s0 0.267 —

m 2.77 g=cm3

c 0.0635 cm

e 68950 MPa

kl 3:5� 105 N/cm

l 127 cm
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An approximation to Eq. (4) is then given by

m
€DðtÞ
€Y ðtÞ

" #
þ q

_DðtÞ
_Y ðtÞ

" #
þ k

DðtÞ

Y ðtÞ

" #
¼ bZðtÞ, (6)

where m, q, and k are ðnþ 1Þ � ðnþ 1Þ matrices representing the mass, damping, and stiffness of
the beam with attached oscillator, respectively, b is a ðnþ 1Þ � n̄ matrix, and

ZðtÞ ¼ ðZ1ðtÞZ2ðtÞ . . .Zn̄ðtÞÞ
T,

where

ZiðtÞ ¼ Zðxi; tÞ; i ¼ 1; 2; . . . ; n̄ (7)

is the input, Zðx; tÞ, discretized in the spatial dimension via partition 0 ¼ x1ox2o � � �oxn̄ ¼ l.
The traditional finite element formulation (see, for example, Ref. [12, Chapter 16]) is used to
derive m, q, and k. In the analyses that follow, n ¼ n̄ ¼ 20, parameters b ¼ 95:25 cm (37:5 in),
mc ¼ 10:9 kg (24 lbm), and kc ¼ 4:38� 105 N=cm (2:5� 105 lb=in) are used for calculations, and
the system is assumed classically damped with 2% damping applied to each mode. Small values
for n and n̄ are used to reduce the number of calculations. We note that additional levels for model
decision can be introduced by considering, for example, several dynamics models for the
spacecraft, each with different values for n and/or n̄.
If we assume negligible feedback from the mass to the beam, Eq. (6) can be simplified to

~m €DðtÞ þ ~q _DðtÞ þ ~kDðtÞ ¼ ~bZðtÞ, (8a)

€Y ðtÞ þ 2zcoc
_Y ðtÞ þ o2

cY ðtÞ ¼ 2zcoc
_DjðtÞ þ o2

cDjðtÞ, (8b)

where ~m, ~q, and ~k are m, q, and k, respectively, with the ðnþ 1Þ row and column removed, ~b is b
with the ðnþ 1Þ row removed, and xj ¼ b. Parameters zc ¼ qc=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4kcmc

p
and oc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mc=kc

p
are the

damping ratio and natural frequency, respectively, of the oscillator. Eqs. (6) and (8) can both be
converted into a system of 2ðnþ 1Þ linear ordinary differential equations and solved using a
state–space approach; numerical solutions are provided using a fourth-order Runge–Kutta
method (see Ref. [13, Section 6.3]).
3. Input model

We next develop the model of the input to the spacecraft, Zðx; tÞ. As will be shown in Section
3.1, the available information on Z is incomplete. Hence, the model for the input is not completely
defined.

3.1. Available information

It is assumed that the applied pressure field can be written as

Zðx; tÞ ¼ sZðxÞQðx; tÞ; t 2 ½0; t̄ �, (9)
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where sZðxÞ is a known, non-negative, deterministic function of x, Qðx; tÞ is a weakly stationary
stochastic process with partially defined second-moment properties, and t̄X0 denotes the duration
of the re-entry event. The available information on Q, 8x 2 ½0; l� and 8t 2 ½0; t̄ �, is given by
(1)
 E½Qðx; tÞ� ¼ 0,

(2)
 Var½Qðx; tÞ� ¼ 1,

(3)
 E½Qðx; tÞQðxþ Z; tþ tÞ� ¼ cQðt; ōÞfðZ; yÞ, where

cQðt; ōÞ ¼
sinðōtÞ
ōt

; ta0 (10)

and

fðZ; yÞ ¼ expð�yjZjÞ, (11)

denote the temporal and spatial correlation functions of Q, respectively, and

(4)
 ō40 is a known, deterministic parameter.
By items (1)–(4), Q is a zero-mean, unit variance, band-limited white-noise process [14] with cut-
off frequency ō. The Fourier transform of cQ gives the power spectral density (PSD) of Q. The
one-sided PSD, denoted by gQðoÞ, is shown on the left of Fig. 6 for ō ¼ 20; 000Hz; sZðxÞ is
shown on the right of Fig. 6. The properties for Z and Q are consistent with results from both
empirical studies [15] and theoretical models [16]. The value for the spatial correlation parameter,
yX0, as well as the probability law for Z, are unknown.

3.2. Mathematical model

As illustrated in the previous section, the second-moment properties of the input, Z, are not
completely defined. Information on the spatial correlation of Q and, hence, the spatial correlation
of Z, is not available. In addition, nothing is known about the probability laws of Q or Z. We
consider two cases for the missing information on Z, and select the optimal model for Z under
each. Case #1:Q ¼ G, where G is a Gaussian process. In this case, the only missing piece of
information is the value for the spatial correlation parameter, y; an extension to Case #1, where
the functional form for f, defined by Eq. (11), is unknown, is considered in Ref. [4], Section 5.7.
Case #2: Q is a non-Gaussian process with completely defined second-moment properties. In this
case, we set fðZÞ ¼ 1, 8Z 2 ½0; l�, which corresponds to the limiting case of y! 0 in Eq. (11).
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Fig. 6. Available information on Z: (a) gQðoÞ in units of Hz�1, and (b) sZðxÞ in units of MPa.
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In Sections 4 and 5, we employ the decision-theoretic method for model selection developed in
Refs. [4,5] to choose optimal models for Z for Cases #1 and #2, respectively. In each section, we
first define a class of candidate models, where each member of the class is consistent with all
available information on Z. Second, we illustrate that different models from the class of candidate
models may have a significant impact on the properties of the response of interest. Third, we
develop an appropriate utility function and use it to select the optimal model from the class of
candidate models. Fourth, we study the sensitivity of the optimal model to changes in the utility
function; it is assumed that the consequences of system failure are well-understood, so that any
uncertainty in the definition of the utility function is limited.
The objective is to use the mathematical models for the spacecraft and the applied pressure field

to assess system performance. In particular, suppose

gð €Y Þ ¼ max
t2½0;x�
j €Y ðtÞj (12)

is a property of interest, where €Y ðtÞ ¼ d2Y ðtÞ=dt2 and xXt̄ denotes a relevant time for assessing
system performance. The performance of the system is then assessed via predictions of

Pðgð €Y ÞpdÞ, (13)

where dX0 denotes a critical value of €Y .
4. Model selection for spatial correlation parameter

We employ the decision-theoretic method for model selection to choose the optimal value for
parameter y of the spatial correlation function of the applied pressure field, Z, defined by Eq. (11),
i.e., Case #1.

4.1. Candidate models

Let

M1 ¼ fyX0: fðZ; yÞ ¼ expð�yjZjÞg (14)

be the collection of candidate models. This collection is uncountably infinite; we instead consider
a finite sub-collection M̄1 �M1, where

M̄1 ¼ fyiX0: fðZ; yiÞ ¼ expð�yijZjÞ; i ¼ 1; . . . ; 4g

¼ fm1ðy1Þ;m2ðy2Þ;m3ðy3Þ;m4ðy4Þg. ð15Þ

The four candidate models are shown in Fig. 7. By Eq. (11), for large y, Gðx; tÞ is nearly
uncorrelated in the spatial dimension; as y approaches zero, the process becomes perfectly
correlated in space. Note that the correlation structure in time for each member of M̄1, i.e.,
E½Gðx0; tÞGðx0; tþ tÞ� for fixed x0 2 ½0; l�, is given by Eq. (10).
Samples of Gðx; tÞ are shown in Fig. 8 for each of the four values for y considered; methods

from Ref. [17, Section 4.3.2], were used to generate the samples. Each plot shows Gðx; tÞ at
x ¼ 25:4 cm ð10 inÞ, denoted by a solid line, and x ¼ 95:25 cm ð37:5 inÞ, denoted by a dashed line,
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the latter being the attachment point for the oscillator. Note that as y approaches zero, the
samples of the processes Gðx1; tÞ and Gðx2; tÞ, x1; x2 2 ½0; l�, are nearly in phase.

4.2. Sensitivity of model output

One sample of the displacement response of the beam at the attachment point,
Dðx ¼ 95:25 cm; tÞ, is shown in Fig. 9 for the case of t̄ ¼ 0:03 and x ¼ 0:09 s. For calculations,
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the input and response are discretized by a uniform time step of 1=2ō ¼ 2:5� 10�5 s. The shaded
area indicates the time interval when the load is applied, t 2 ½0; t̄ �; the unshaded area corresponds
to free vibration, t 2 ðt̄; x�. These plots show that the displacement response at the attachment
point is very sensitive to the degree of spatial correlation on the input: as the spatial correlation
increases (decreasing y), the magnitude of the response increases.
Estimates of ðmaxxjDðx; tÞj;maxtjDðx; tÞjÞ, x 2 ½0; l�, t 2 ½0; x�, the joint distribution of the

location and magnitude of the maximum displacement of the beam, are shown in Fig. 10 using
results from 2000 Monte Carlo samples. For large y (nearly uncorrelated in space), the range of
observed values for maxxjDðx; tÞj is large and they occur most frequently at the right end of the
beam; the range of observed values for maxtjDðx; tÞj is small in comparison. As y decreases, the
pattern is reversed. The range of observed values for maxxjDðx; tÞj is small and they occur most
frequently near the attachment point; the range of observed values for maxtjDðx; tÞj is large in
comparison. Similar patterns are observed for the acceleration response of the component, €Y ðtÞ.
One sample of €Y ðtÞ is shown in Fig. 11. As the degree of spatial correlation increases, so does the
magnitude of the acceleration of the attached mass. Estimates of the variance of €Y ðtÞ using results
from 2000 Monte Carlo samples are shown in Fig. 12 for t 2 ½0; t̄�.
Estimates of the distribution of gð €Y Þ defined by Eq. (12), using results from 2000 Monte Carlo

samples, are shown in Fig. 13. It is evident from the figure that assuming the input to be
uncorrelated in space, which corresponds to the case where y ¼ 5:0 (model m1), is non-
conservative, since the probability of exceeding a critical level of acceleration increases with
decreasing y.
For this 1-D model of the spacecraft, it has been demonstrated that predictions of beam

displacement, Dðx; tÞ, and acceleration of the mass, €Y ðtÞ, are sensitive to the degree of spatial
correlation of the input, Zðx; tÞ. Specifically, as the degree of spatial correlation increases, the
maximum in time of Dðx; tÞ and €Y ðtÞ increase. In the general 3-D case, the input process Zðx; tÞ
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exhibits spatial correlation in two directions (axial and hoop); the sensitivity of model output
demonstrated will likely increase. It is therefore crucial to select optimal models for the spatial
correlation of the input.

4.3. Optimal model

Here we select an optimal value for the spatial correlation parameter, y. We begin with an
analysis on the smaller class of candidate models, M̄1 defined by Eq. (15), then use the results to
approximate the optimal member from the larger, uncountable class, M1 defined by Eq. (14).
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The objective is to assess the performance of the spacecraft in the re-entry environment via
Eq. (13). Let

hiðdÞ ¼ Pðgð €Y Þpd jmiÞ; i ¼ 1; 2; 3; 4, (16)

denote the prediction of performance under model mi, where d is the specified critical value for the
acceleration of the mass, €Y , and gð €Y Þ is defined by Eq. (12). By Eq. (16), if mj 2 M̄1 is true, the
system performance is hjðdÞ. In this case, we say that model mi results in a conservative prediction
of system performance if hiðdÞphjðdÞ. Likewise, mi results in a non-conservative prediction of
system performance if hiðdÞ4hjðdÞ. A conservative prediction is preferable to a non-conservative
prediction.
Methods from decision theory [18] can be used to select the optimal model from M̄1. These

methods are used to quantify the consequences of choosing an inappropriate model for the input,
Z, through the use of a utility function, U, where the objective is to select the model with the
minimum expected utility [4,5]. Define

Uðmi;mjÞ ¼ gðmiÞ þ cðmi;mjÞ (17)

to be the utility of model mi, when model mj is true, where gðmiÞX0 denotes the cost of model mi,
and cðmi;mjÞX0 denotes the penalty associated with using model mi, when model mj is true. For
example, we set gðmiÞ4gðmkÞ if a prediction with model mi requires additional resources, e.g.,
CPU time, than a prediction with model mk, and cðmi;mjÞ4cðmk;mjÞ if, assuming mj is true, the
consequences of a prediction with model mk are preferable to the consequences of a prediction
with model mi.
The optimal model, m% 2 M̄1, is, such that

uðm%ÞpuðmjÞ; j ¼ 1; 2; 3; 4, (18)

where

uðmiÞ ¼ E½Uðmi; M̄1Þ� ¼ gðmiÞ þ
X4
j¼1

cðmi;mjÞpj, (19)

is the expected utility of model mi, and pj denotes the probability that model mj is true. For
calculations, we consider the following penalty:

cðmi;mjÞ ¼
~cðhi; hjÞ ¼

b1½hiðdÞ � hjðdÞ�
2 if hiðdÞphjðdÞ;

b2½hiðdÞ � hjðdÞ�
2 if hiðdÞ4hjðdÞ;

(
(20)

where b24b1X0 are deterministic parameters. By Eq. (20), non-conservative predictions of
system performance are heavily penalized; overly conservative predictions are also subject to
penalty.
The expected utilities of the four models in M̄1 are listed in Table 2 for three values of d; in each

case, the optimal model, m%, is in bold. Parameters b1 ¼ 1 and b2 ¼ 2 were used for calculations.
Each candidate model for Z is assumed equally likely and has no cost, i.e., pi ¼

1
4
and gðmiÞ ¼ 0,

i ¼ 1; 2; 3; 4. For d ¼ 49m=s2 (5 g) and d ¼ 98m=s2 (10 g), models m2 and m3 are selected,
corresponding to y2 ¼ 0:1 and y3 ¼ 0:02, respectively. Model m1, corresponding to the case where
the spatial correlation is nearly white noise, is never selected since the assumption that the input is
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Table 2

Expected utilities of each mi 2M0
1

d ðm=s2Þ Expected utilities

uðm1Þ uðm2Þ uðm3Þ uðm4Þ

19.6 7:935� 10�4 1:323� 10�4 1:323� 10�4 1:323� 10�4

49 1.114 1:670� 10�1 2:057� 10�1 2:223� 10�1

98 3:203� 10�2 2:615� 10�2 1:108� 10�2 2:287� 10�2
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uncorrelated in space leads to non-conservative predictions of system performance (see Fig. 13).
For d ¼ 19:6m=s2 (2 g), models m2, m3, and m4 give identical estimates of the performance metric,
so there is no preference of one model over another.
A surface defining the expected utility of each model can be defined over 1pdp14 and

0:0005pyp5, the latter being consistent with M1 defined by Eq. (14). This surface is shown in
Fig. 14, where the natural logarithm of the expected utilities are plotted to emphasize the results.
The minimum of the surface for each d gives an estimate of the optimal value for y 2M1. As d

increases, the optimal model corresponds to an increasing degree of spatial correlation; the
dependence on spatial correlation decreases with increasing d. The limiting cases of perfect and
zero spatial correlation on the input are commonly used in practice; by Fig. 14, these assumptions
are not optimal for any value for d.

4.4. Sensitivity of optimal model

We study the sensitivity of the optimal model to changes in the parameters of the penalty
function, Eq. (20). To do so, define a normalized penalty function parameter b̄ ¼ b2=b1. For b̄b1,
non-conservative predictions of system performance are highly penalized with respect to
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conservative predictions; as b̄! 1, the penalty for conservative and non-conservative models is
identical.
The optimal models from M1 are plotted in Fig. 15 for various values for d. Four lines are

plotted, which correspond to four different values for b̄. The solid line ðb̄ ¼ 2Þ corresponds to the
results of Section 4.3. The dotted lines correspond to the four models from M̄1. In general,
changing b̄ shifts the curve up or down. As b̄ increases, the penalty function defined by Eq. (20)
becomes highly asymmetrical, and models with more spatial correlation (smaller y) are favored. In
all cases, the optimal spatial correlation parameter satisfies 0:005pyp0:5, meaning that the
limiting cases of perfect or zero spatial correlation are unfavorable, even for large changes in b̄.
Hence, precise values for b1 and b2 are not essential for a rational decision.
5. Model selection for marginal PDF of input

Recall Figs. 1 and 2, showing measured accelerations during the re-entry of the Space Shuttle
Orbiter and wind-tunnel pressure measurements on an aircraft fuselage, respectively. In both
plots, non-Gaussian behavior is clearly evident. In this section, we consider non-Gaussian models
for the input, Z, i.e., Case #2; the decision-theoretic method for model selection is used to select
the optimal member from a class of candidate models for Z.
We assume that: (1) the spatial correlation function of the input, f, is perfectly known and

equal to one, and (2) there is no feedback from the oscillator to the beam. Assumption (1) implies
that Eq. (9) reduces to

Zðx; tÞ ¼ sZðxÞQðtÞ; t 2 ½0; t̄ �, (21)

where the dependence of Q on x is removed because it exhibits perfect spatial correlation. As a
result, the second-moment properties of Z are now completely defined. All candidate models
considered in this section are equivalent in the second-moment sense, but have different marginal
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Table 3

Oscillator parameters

Parameter Values Units

b 31.75, 57.15, 95.25 cm

oc 2000, 2250, 5000 Hz
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distributions. Because of assumption (2), the method for analysis is given by Eq. (8). This allows
us to study the effects of the distribution of Z on €Y for various values of b, the location of the
oscillator (see Fig. 5), and oc, the natural frequency of the oscillator.
Table 3 lists the values of the oscillator parameters used in the analyses that follow; the values

for oc considered are consistent with observed resonant frequencies of, for example, small
electronics packages, e.g., circuit boards. The damping ratio of the oscillator, zc ¼ 0:02, as well as
the parameters of the beam from Table 1, remain fixed. It can be shown that one of the resonant
frequencies of the oscillator considered, oc ¼ 2000Hz, coincides with a resonant frequency of the
beam (see Ref. [4, Section 5.3.3]).

5.1. Candidate models

Let

M2 ¼ fZiðx; tÞ; i ¼ 1; 2; 3; 4g ¼ fm1;m2;m3;m4g (22)

be the class of candidate models for the applied pressure field, where

Ziðx; tÞ ¼ sZðxÞQiðtÞ, (23)

Q1 is a zero mean, unit variance, stationary Gaussian process with correlation function given by
Eq. (10), Q2 is a student-t translation process, and Q3 and Q4 are filtered Poisson processes. As
previously stated, the processes Qi, i ¼ 1; 2; 3; 4, are equal in the second-moment sense.
The translation process [19], Q2, is given by

Q2ðtÞ ¼ F�1 � F½Q1ðtÞ�, (24)

where

Fðz; rÞ ¼
Gðrþ 1=2Þffiffiffiffiffi
pr
p

Gðr=2Þ

Z ffiffiffiffiffiffiffiffiffiffiffi
r=ðr�2Þ
p

z

�1

1þ
t2

r

� ��1=2ðrþ1Þ
dt (25)

is a student-t distribution with ðr� 1Þ dof [20], F denotes the standard normal CDF, and Gð � Þ
denotes the Gamma function. A random variable with the distribution given by Eq. (25) has zero
mean and unit variance; the process Z2ðx; tÞ ¼ sZðxÞQ2ðtÞ is therefore equivalent in the second-
moment sense to Z1ðx; tÞ for each r. Z2ðx; tÞ can be assigned any coefficient of kurtosis greater
than 3 without altering the second-moment properties via [21]

Kur½Z2� ¼
3ðr� 2Þ

r� 4
; r44. (26)
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The PDF of the student-t distribution with a coefficient of kurtosis of 7 (r ¼ 11
2
), is plotted along

with the Gaussian PDF in the left-hand side of Fig. 16. This distribution has heavier tails that of
the Gaussian distribution, as illustrated further by the right-hand side of the figure; the Gaussian
distribution has a coefficient of kurtosis of 3.
The third and fourth models considered are Q3ðtÞ ¼ Vðt; l3Þ and Q4ðtÞ ¼ Vðt; l4Þ, where

V ðt; lÞ ¼

0; NðtÞ ¼ 0;PNðt;lÞ
k¼1

W kf ðt� TkÞ; NðtÞ40;

8><
>: (27)

is a type of filtered Poisson process [17, p. 78]. The process is characterized by pulses of
deterministic shape and random magnitude, occurring at (random) Poisson times. V ðtÞ depends
on fNðt; lÞ; tX0g, a homogeneous Poisson counting process of intensity l40, independent
identically distributed (i.i.d.) random variables fW k; kX1g, with mean zero and variance s2, the
random times, fTk; kX1g, at which the Poisson events occur, and the deterministic shape
function, f ðtÞ, tX0. The process NðtÞ has the property that E½NðtÞ� ¼ lt so that l ¼ E½NðtÞ�=t
represents the average number of pulses per unit time [22]. With proper choice of f ðtÞ, s2, and l,
models Z3ðx; tÞ and Z4ðx; tÞ are equivalent to Z1ðx; tÞ and Z2ðx; tÞ in the second-moment sense (see
Ref. [17, Section 3.3]). For small l, the pulses have large magnitudes and occur infrequently. As l
increases, the pulses occur more frequently, but with smaller magnitude; as l!1, the marginal
distribution of V ðtÞ becomes Gaussian [17].
One sample of the Gaussian process, Q1ðtÞ ¼ GðtÞ, the translation process, Q2ðtÞ ¼ F�1 � F½GðtÞ�,

and the two filtered Poisson processes, Q3ðtÞ ¼ V ðt; l3Þ and Q4ðtÞ ¼ V ðt; l4Þ with l3 ¼ 10; 000 and
l4 ¼ 100; 000, respectively, are plotted in Fig. 17. Samples from the four models look quite
different, but each is consistent with all available information, i.e., they each have the specified
second-moment properties. Estimates of the marginal PDFs of Q3 and Q4 using 500 samples are
shown in Fig. 18. Also shown is the marginal PDF of Q1.
5.2. Sensitivity of model output

One sample of the acceleration of the mass, €Y ðtÞ, is shown in Fig. 19; the four plots correspond
to the four models of the applied pressure field for the case of b ¼ 31:75 cm (12:5 in) and
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oc ¼ 5000Hz. The shaded area indicates the time interval when the load is applied,
t 2 ½0; t̄ ¼ 0:05 s�; the unshaded area corresponds to free vibration, t 2 ½t̄; x�. €Y is the output
from a linear filter. Because of this, and the fact that all inputs considered are equivalent in the
second-moment sense, the outputs will have identical second-moment properties [17].
As previously discussed, the probability laws for mi 2M2 are different; the resulting probability

laws for €Y ðtÞ, and hence the performance metric defined by Eq. (13) will therefore also differ. To
illustrate, we define

hiðŝdÞ ¼ Pðgð €Y Þpŝd jmiÞ; i ¼ 1; 2; 3; 4. (28)

The quantity ŝ is the estimated steady-state standard deviation of €Y ðtÞ and is used to normalize
the tail estimates; gð €Y Þ is defined by Eq. (12). We note that it is possible to calculate the true
value for the standard deviation of €Y ðtÞ from the covariance equation, but the large dimension
of Eq. (8a) proved prohibitive. Estimates of Eq. (28) are illustrated by Fig. 20 for two cases:
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(1) b ¼ 95:25 cm (37:5 in), oc ¼ 2000Hz (left), and (2) b ¼ 31:75 cm (12:5 in), oc ¼ 5000Hz
(right). As shown by the plot on the right, models m2, m3, and m4, in general, provide conservative
estimates of Eq. (28) with respect to the Gaussian model, m1. Model m3 is the most conservative,
due to the fact that Z3 exhibits the heaviest tail. For oc ¼ 2000Hz, a resonant frequency of
the beam, the tail estimates are nearly identical, as shown in the left-hand side of Fig. 20. The
response of the oscillator is insensitive to the tails of Zðx; tÞ when oc coincides with a resonant
frequency of the beam.
The magnitude of the difference between the tails of the distributions shown in Fig. 20 is

sensitive to changes in parameters b and oc. To illustrate, we define

rðŝdÞ ¼ max
i
jh1ðŝdÞ � hiðŝdÞj; i ¼ 2; 3; 4. (29)

Eq. (29) is plotted on the left-hand side of Fig. 21 for the case of ŝd ¼ 4 and different values for b

and oc. The shading of the bars denotes which model maximizes r; in seven of the nine cases
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considered, it is m3 (unshaded), while it is m2 in the remaining two cases (shaded). In general, for
increasing b, r may increase or decrease. As the frequency of the oscillator is increased, r
increases; for oc ¼ 2000Hz, a resonant frequency of the beam, r is near zero for all values for b

considered. Hence, the sensitivity to the tails of Z can be minimized by placing oc near a resonant
frequency of the beam. Of course, this has the undesirable effect of increasing the variance of the
response, as depicted by the right-hand side of Fig. 21.
It has been demonstrated that predictions of component acceleration, €Y , are sensitive to the

tails of the marginal distribution of the input, Z, when the oscillator natural frequency, oc, does
not coincide with a resonant frequency of the beam. As the tail of the marginal PDF of the input
model becomes heavier, the maximum in time of €Y ðtÞ increases. A Gaussian model for Z can
therefore give non-conservative predictions of system performance.

5.3. Optimal model

In this section, we use the decision-theoretic method for model selection to select the optimal
marginal distribution of the input pressure field from the class of candidate models defined by Eq.
(22).
The penalty function used in the analysis is unchanged from the previous section, i.e., Eq. (20).

However, the computational effort associated with each model in M2 is no longer identical; the
costs, gðmiÞ, i ¼ 1; 2; 3; 4, defined by Eq. (17) must reflect this. Table 4 lists the average CPU times
required to calculate one sample of each of the four candidate models in M2. Samples of the
Gaussian process, m1, can be calculated with the least effort; the filtered Poisson process with
l3 ¼ 10; 000, m3, requires slightly more. Samples of the filtered Poisson process with
l4 ¼ 100; 000, m4, take approximately 10 times longer to generate than either m1 or m3. The
corresponding costs, scaled by deterministic parameter g040, are listed in Table 4. In each case,
gðmiÞ=g0 is the average CPU time of mi, normalized by the CPU time of m1 (the fastest).
Table 5 lists the expected utilities of each mi 2M2 using Eq. (19). Results for the different

values of b, the location of the oscillator, and oc, the resonant frequency of the oscillator, are
shown for ŝd ¼ 4. Parameters b1 ¼ 1, b2 ¼ 2, and g0 ¼ 0:05 were used for calculations. The
translation process, m2, is selected most often; the cost of m2 is not significantly greater than that
of m1, and it, in general, provides slightly conservative estimates of Pðgð €Y ÞpdÞ. The filtered
Poisson process with l ¼ 10; 000, m3, is selected only twice; it provides overly conservative
estimates of system performance in many cases. The Gaussian model, m1, is selected only for the
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Table 5

Expected utilities of each mi 2M2

b ðcmÞ oc ðHzÞ uðm1Þ uðm2Þ uðm3Þ uðm4Þ

31.75 2000 5:109� 10�3 7:924� 10�3 5:344� 10�3 4:666� 10�2

31.75 2250 1:854� 10�2 1:800� 10�2 2:182� 10�2 5:667� 10�2

31.75 5000 2:507� 10�2 2:108� 10�2 2:560� 10�2 5:706� 10�2

57.15 2000 5:013� 10�3 7:830� 10�3 5:265� 10�3 4:667� 10�2

57.15 2250 8:294� 10�3 1:006� 10�2 8:209� 10�3 4:796� 10�2

57.15 5000 4:013� 10�2 3:061� 10�2 4:317� 10�2 6:811� 10�2

95.25 2000 5:003� 10�3 7:819� 10�3 5:254� 10�3 4:664� 10�2

95.25 2250 7:085� 10�3 9:276� 10�3 7:060� 10�3 4:742� 10�2

95.25 5000 5:810� 10�2 3:972� 10�2 6:699� 10�2 9:117� 10�2

Table 4

Average CPU times and costs

Model CPU time (s) Cost, gðmiÞ

m1 0.6558 g0
m2 1.025 1:563g0
m3 0.6886 1:050g0
m4 6.114 9:323g0
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case when oc ¼ 2000Hz, i.e., when the oscillator frequency coincides with a resonant frequency of
the beam. This is because the tail estimates nearly coincide here (see Fig. 20), and the cost term
dominates the utility. Model m4 provides slightly conservative estimates of system performance,
but is never selected due to its large computational cost (see Table 4).

5.4. Sensitivity of optimal model

We consider the sensitivity of the optimal model to changes in parameter g0, the weight on the cost.
For g0 ¼ 0, the computational costs of the models are ignored in the model selection process; as
g0!1, the cost dominates the model selection process. Fig. 22 shows the optimal model, denoted by
m%, for each value of b and oc considered, for four values of g0. The case where g0 ¼ 0:005
corresponds to the results of Table 5. For g0 ¼ 0, computational cost is ignored, and model m4 is
selected most often. As g0 increases, the Gaussian model, m1, is optimal for any b and oc.
6. Conclusions

A method for selecting optimal models for the environment during atmospheric re-entry of a
spacecraft was developed. The method was based on a decision-theoretic approach for selecting
the optimal member from a collection of candidate models for the environment under limited
information. Two cases were considered. First, the environment was assumed Gaussian with
partially defined second-moment properties. Second, the environment was assumed to be
completely defined in the second-moment sense, but with an unknown marginal distribution
function. For each case, a collection of candidate models was considered, where each model in the
collection was consistent with the available information. The optimal model in the collection
minimized a postulated utility function. It was found that: (1) the often-used assumptions of
perfect or zero spatial correlation on the input process were unfavorable, (2) non-Gaussian
models for the input were sometimes optimal, and (3) results can be sensitive to the utility
function.
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[10] M. Hetényi, Beams on Elastic Foundation, The University of Michigan Press, 1983.

[11] L. Bergman, J. Nicholson, Stationary response of combined linear dynamic systems to stationary excitation,

Journal of Sound and Vibration 103 (2) (1985) 225–236.

[12] R. Craig Jr., Structural Dynamics, Wiley, New York, NY, 1981.

[13] M. Greenberg, Advanced Engineering Mathematics, vol. 2, Prentice-Hall, Upper Saddle River, NJ, 1998.

[14] T. Soong, M. Grigoriu, Random Vibration of Mechanical and Structural Systems, PTR Prentice-Hall, Englewood

Cliffs, NJ, 1993.

[15] A. Laganelli, A. Martellucci, L. Shaw, Wall pressure fluctuations in attached boundary-layer flow, AIAA Journal

21 (4) (1983) 495–502.

[16] B. Hassan, Estimation of fluctuation pressures on a sphere-cone geometry at hypersonic speeds, Technical Report,

Sandia National Laboratories, September 2001.

[17] M. Grigoriu, Applied Non-Gaussian Processes, PTR Prentice-Hall, Englewood Cliffs, NJ, 1995.

[18] H. Chernoff, L. Moses, Elementary Decision Theory, Dover Publications, New York, NY, 1959.

[19] M. Grigoriu, Crossings of non-Gaussian translation processes, Journal of Engineering Mechanics 110 (1984)

610–620.

[20] A. Ang, W. Tang, Probability Concepts in Engineering Planning and Design: Basic Principles, vol. 1, Wiley,

New York, NY, 1975.

[21] C. Kafali, M. Grigoriu, Non-Gaussian model for spatially coherent seismic ground motions, in: A.D. Kiureghian,

S. Madanat, J. Pestana (Eds.), Applications of Statistics and Probability in Civil Engineering, Millpress, San

Francisco, CA, 2003, pp. 321–327.

[22] S. Resnick, Adventures in Stochastic Processes, Birkhäuser, Boston, 1992.
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